

Contents lists available at ScienceDirect

Journal of Organometallic Chemistry

journal homepage: www.elsevier.com/locate/jorganchem

Lithiated γ -O-functionalized propyl phenyl sulfides and sulfones of the type Li[CH(SO_xPh)CH₂CH₂OR] (x = 0, 2). [Li{CH(SPh)CH₂CH₂Ot-Bu}(tmeda)] – A structurally characterized organolithium inner complex

Michael Block^a, Matthias Linnert^a, Santiago Gómez-Ruiz^b, Dirk Steinborn^{a,*}

^a Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Straße 2, D-06120 Halle, Germany ^b Departamento de Química Inorgánica y Analítica, E.S.C.E.T., Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain

ARTICLE INFO

Article history: Received 24 November 2008 Received in revised form 22 April 2009 Accepted 27 May 2009 Available online 3 June 2009

Dedicated to Professor Ingo-Peter Lorenz on the occasion of his 65th Birthday.

Keywords: O-functionalized sulfides O-functionalized sulfones Regioselective lithiations Tin–lithium transmetallation Organolithium inner complexes

ABSTRACT

Lithiation of *O*-functionalized alkyl phenyl sulfides PhSCH₂CH₂CH₂CR (**R** = Me, **1a**; *i*-Pr, **1b**; *t*-Bu, **1c**; CPh₃, **1d**) with *n*-BuLi/tmeda in *n*-pentane resulted in the formation of α - and *ortho*-lithiated compounds [Li{CH(SPh)CH₂CH₂OR}(tmeda)] (α -**2a**-**d**) and [Li{o-C₆H₄SCH₂CH₂CH₂OR)(tmeda)] (o-**2a**-**d**), respectively, which has been proved by subsequent reaction with *n*-Bu₃SnCl yielding the requisite stannylated γ -ORfunctionalized propyl phenyl sulfides *n*-Bu₃SnCH(SPh)CH₂CH₂OR (α -**3a**-**d**) and *n*-Bu₃Sn(o-C₆H₄SCH₂CH₂CH₂OR) (o-**3a**-**d**). The α /*ortho* ratios were found to be dependent on the sterical demand of the substituent R. Stannylated alkyl phenyl sulfides α -**3a**-**c** were found to react with *n*-BuLi/tmeda and *n*-BuLi yielding the pure α -lithiated compounds α -**2a**-**c** and [Li{CH(SPh)CH₂CH₂OR] (α -**4a**-**b**), respectively, as white to yellowish powders. Single-crystal X-ray diffraction analysis of [Li{CH(SPh)CH₂-CH₂Ot-Bu}](tmeda)] (α -**2c**) exhibited a distorted tetrahedral coordination of lithium having a chelating tmeda ligand and a *C*,O coordinated organyl ligand. Thus, α -**2c** is a typical organolithium inner complex.

Lithiation of *O*-functionalized alkyl phenyl sulfones PhSO₂CH₂CH₂CH₂CH₂OR (R = Me, **5a**; *i*-Pr, **5b**; CPh₃, **5c**) with *n*-BuLi resulted in the exclusive formation of the α -lithiated products Li[CH(SO₂Ph)CH₂CH₂OR] (**6a**-**c**) that were found to react with *n*-Bu₃SnCl yielding the requisite α -stannylated compounds *n*-Bu₃SnCH(-SO₂Ph)CH₂CH₂OR (**7a**-**c**). The identities of all lithium and tin compounds have been unambiguously proved by NMR spectroscopy (¹H, ¹³C, ¹¹⁹Sn).

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Since the reports of Köbrich on the carbenoid properties of halogenmethyl lithium compounds ("Köbrich's carbenoids") [1], heteroatom-functionalized methyllithium compounds have been in the focus of many investigations [2,3]. Compounds of the types Li- CH_2YR_n (I) and $LiCH_2YO_xR_n$ (II) having Lewis-basic ($YR_n = OR$, SR, NR_2 , PR_2 , etc.; R = alkyl, aryl) and dipole stabilized [4] ($YO_xR_n = POR_2$; SOR, SO₂R, etc; R = alkyl, aryl) functionalizations, respectively, are of special interest. In the case of Köbrich's thermally highly unstable compounds, an intramolecular interaction between the halo substituents and lithium atoms play a crucial role for the carbenoid properties [5]. On the other hand, also intermolecular interactions between the Lewis-basic heteroatom with the lithium center may have a severe influence on the stability and reactivity of these compounds. Thus, in contrast to the dinuclear S-functionalized compounds [{LiCHR'SR}₂] (**Ia**; R = alkyl, aryl; R' = H, alkyl, aryl) [6,7] only the monomeric derivative [Li(CH₂SPh)(pmdta)] (pmdta = N, N, N', N'', N''-pentamethyldiethylenetriamine) exhibited at elevated temperature a carbenoid reactivity [8]. Thus, the degree of aggregation seems to be decisive for the reactivity. In the case of the sulfonylmethyl lithium compounds $[Li(CH_2SO_2R)L_x]$ (**IIa**, L = neutral *N* or *O* donor) the manner of the Li coordination (α -C vs. O) was found to be essential for their structures and reactivities [9–11].

Lithiation reactions of alkyl phenyl sulfides resulting in type Ia compounds (R' = alkyl, R = Ph) were found to proceed with different regioselectivities (α - vs. ortho-lithiation) depending on R' [12]. The introduction of a donor function in R' in a position favorably for intramolecular coordination may give rise to the formation of organometallic inner complex formation. Thus, γ-NR₂-functionalized propyl phenyl sulfides PhSCH₂CH₂CH₂NR₂ were found to favor the α -lithiation yielding such inner complexes [13,14]. Here, we report on the regioselectivities in lithiation reactions of γ -ORfunctionalized propyl phenyl sulfides PhSCH₂CH₂CH₂OR (**1a-d**) and on tin-lithium transmetallation reactions yielding sulfur-functionalized organolithium compounds of the type LiCH(SPh)CH₂ CH₂OR. Structural investigations gave proof that the *tert*-butoxy derivative (R = t-Bu, α -1a) is an organometallic inner complex in the solid state. Furthermore, we report on lithiation reactions of the requisite sulfone derivatives resulting in lithium compounds of the type $Li[CH(SO_2Ph)CH_2CH_2OR]$ (**6a**-**c**).

^{*} Corresponding author. Tel.: +49 345 55 25620; fax: +49 345 55 27028. *E-mail address:* dirk.steinborn@chemie.uni-halle.de (D. Steinborn).

⁰⁰²²⁻³²⁸X/\$ - see front matter \odot 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.jorganchem.2009.05.035

2. Results and discussion

2.1. Lithiation of PhSCH₂CH₂CH₂OR

The γ -OR-functionalized propyl phenyl sulfides, PhS-CH₂-CH₂-CH₂OR (R = Me, **1a**; *i*-Pr, **1b**; *t*-Bu, **1c**; CPh₃, **1d**) have been obtained by conventional methods from PhSCH₂CH₂CH₂Br and PhSCH₂ CH₂CH₂OH, respectively (see Section 3). Compounds **1a–d** were found to react with *n*-BuLi/tmeda in *n*-pentane yielding the α -and *ortho*-lithiated compounds **2a–d** as revealed by the subsequent reaction with *n*-Bu₃SnCl yielding the requisite stannylated γ -OR-functionalized propyl phenyl sulfides **3a–d** (Scheme 1).

Both, lithiation and stannylation proceeded at room temperature with a high degree of conversion (>85%). The α /ortho ratios were found to be time dependent showing that the ortho derivatives are the kinetically controlled products whereas the α derivatives are under thermodynamic control (Table 1), as it has already been shown in lithiation reactions of PhSMe [15]. In accordance with that ¹³C NMR spectroscopic investigations of the reaction mixture **1c**/*n*-BuLi/tmeda in deuterated benzene revealed after about 15 min a high portion of the ortho-lithiated product o-**3c** which was decreased in the course of reaction with concomitant increase of the portion of the α -lithiated product α -**3c**. Analogous results could be obtained in the lithiation reaction of **1b**.

The quantitative evaluation of the α /ortho ratios of the air-stable stannylated compounds α -**3**/o-**3** revealed a strong dependency on the sterical demand of the γ -OR substituent, see Table 1 (column 4): With the increasing bulkiness of the "parent" primary (Me), secondary (*i*-Pr) and tertiary (*t*-Bu) alkyl groups R, the portion of the α -product decreases from 100% to 66%. In accordance with that the sterically highly demanding CPh₃ derivative gave 42% ortho product. The α /ortho ratios (values taken from Ref. [14]) for the secondary and sterically highly demanding menthyl (Men) and borneyl (Bor) derivatives lie – as expected – between the sterically less demanding secondary isopropoxy (**3b**) and the tertiary *tert*-butoxy (**3c**) derivatives.

Fractional distillation under vacuum of the stannylated sulfides **3a–c** (α /ortho mixtures) resulted in the pure α -stannylated products α -**3a–c** that were obtained as colorless to pale yellow oils in (isolated) yields between 49% and 81%, whereas the distillation of α -**3d** failed due to its high boiling point. The identities of α -**3a–c** have been confirmed by microanalysis, ¹H, ¹³C and ¹¹⁹Sn NMR spectroscopy (Table 2). In tetraorgano tin compounds of the type *n*-Bu₃Sn–R' the ¹J(¹¹⁹Sn, ¹³C_{Bu}) coupling constants reflect the electronic influence of the substituents R' such that the higher

Table 1

Degree of conversion (in %) and α /ortho ratios (given in parentheses) for the lithiation and subsequent stannylation of *O*-functionalized sulfides (**1a–d**) according to Scheme 1. For comparison (taken from Ref. [14]) the requisite values for the menthyl (Men) and borneyl (Bor) derivatives are also given.

	R	$t = 1^a$	$t = 24^{a}$	$t = 72^{a}$
a	Me	72 (95:5)	92 (100:0)	94 (100:0)
b	<i>i</i> -Pr	65 (65:35)	91 (81:19)	93 (92:8)
c	t-Bu	76 (52:48)	86 (66:34)	91 (79:21)
d	CPh ₃		85 (58:42)	
	Men		90 (73:27)	
	Bor		90 (68:32)	

^a *t* is the reaction time in h.

the magnitude of the ${}^{1}J({}^{119}\text{Sn},{}^{13}\text{C}_{\text{Bu}})$ coupling constant the lower the electronic influence of R' [16,17]. Inspection of Table 2 reveals that the electronic influence of the groups R' = CH(SPh)CH₂CH₂OR is not significantly dependent on the substituent R (α -**3a**-**c**: 325.6–328.7 Hz). Furthermore, the electronic influence proved to be roughly the same as that of other α -S-functionalized groups such as R' = CH₂SPh (321.2 Hz [18]) and R' = CH(Me)SPh (323.0 Hz [12]) but smaller than that of R' = CMe(Ph)SPh (310.9 Hz [14]). All these values are in-between those of the methyl (R' = Me, 330.1 Hz [17]) and the ethyl group (R' = Et, 319.0 Hz [19]).

2.2. Tin-lithium transmetallion of n-Bu₃SnCH(SPh)CH₂CH₂OR

The α -stannylated sulfides α -**3a**-**c** were found to react smoothly in hydrocarbons (*n*-pentane) with *n*-BuLi/tmeda in a tin–lithium transmetallation reaction yielding the pure α -lithiated sulfides α -**2a**-**c** (Scheme 2). The organolithium compounds α -**2a**-**c** could be isolated as colorless to yellowish powders in (isolated) yields between 51% and 89%. In contrast to this, metallation of the sulfides **1b/c** with *n*-BuLi/tmeda according to Scheme 1 gave only mixtures of α - and *ortho*-lithiated products; experiments to isolate these lithium compounds resulted in the formation of oily products only. Although the requisite lithiation reaction starting from **1a** led to the exclusive formation of the α -product, the tin–lithium transmetallation reaction proved to be superior because a pure solid compound could be isolated.

The lithiated compounds α -**2a**-**c** were not only highly moisture sensitive but even pyrophoric. They were well soluble in THF. These solutions were found to be stable at -40 °C whereas at room temperature decomposition was observed within 1 day. Furthermore, there was found an increasing solubility (R = Me < *i*-Pr < *t*-

Scheme 1. Synthesis of lithiated (2a-d) and stannylated γ-OR functionalized sulfides (3a-d).

Table 2

Selected NMR spectroscopic data (δ in ppm, J in Hz) of α -stannylated sulfides *n*-Bu₃SnCH(SPh)CH₂CH₂OR (α -**3a**-c).

	R	$\delta_{\alpha-C} (^{1}J_{Sn,C})$	$\delta_{\alpha-C (Bu)} (^1 J_{Sn,C})$	$\delta(^{119}\text{Sn})$
α-3a	Me	25.1 (250.8)	10.2 (328.7)	-10.7
α-3b	<i>i</i> -Pr	24.9 (249.2)	10.0 (325.9)	-9.7
α-3c	<i>t-</i> Bu	24.9 (247.5)	10.0 (325.6)	-9.5

Bu) in benzene and these solutions were stable for a longer period even at room temperature. When the tin–lithium transmetallations were performed in absence of tmeda (α -**3a/b** + *n*-BuLi), the lithiated products α -**4a/b** were also found to be solids. In contrast to the tmeda adducts, they were only soluble in coordinating solvents such as THF whereas these solutions were also not stable at room temperature. All these findings indicate that the tmedafree products are of higher aggregation in the solid state. In contrast to that – at least the tmeda adduct α -**2c** – proved to be monomeric in the solid state (vide infra).

The identities of the lithiated compounds α -2a-c were confirmed by ¹H and ¹³C NMR spectroscopy and in the case of *tert*-butoxy derivative $(\alpha - 2c)$ also by single-crystal X-ray diffraction analysis. In that case also the inspection of the ${}^{1}I(\alpha - {}^{13}C, {}^{1}H)$ coupling constant revealed a decrease upon lithiation by 10 Hz (130 Hz in α -2c vs. 140 Hz in 1c) being in accordance with an α -C-Li bond also in THF solution as expected [20]. Due to the high quadrupole moment of the most abundant lithium isotope ⁷Li (*I* = 3/2, 92.6% abundance) the signals of the β - and γ -protons of the alkyl chains in α -**2a**-**c** appeared broad whereas, surprisingly, the α -proton signals remained to be sharp. The α -protons were found strongly highfield shifted (0.88-0.92 ppm) compared to the sulfides 1a-c (2.99-3.00 ppm). The signals of all other protons also remained to be sharp and showed smaller shifts (up to 0.4 ppm) upon lithiation. In the ¹³C NMR spectra the signals for the α -C atoms (15.5–15.8 ppm in α -**2a**-c vs. 30.4–30.5 ppm in 1a-c) and for the *i*-C atoms of the phenvl substituents $(152.1-152.4 \text{ ppm in } \alpha - 2a - c \text{ vs. } 136.6 - 136.8 \text{ ppm in } 1a - c)$ showed the most significant shifts.

Furthermore, the synthesis of lithiated sulfides via tin–lithium transmetallation opened up an alternative way to proof that *ortho*and α -lithiation of the sulfides (see Table 1) are under kinetic and thermodynamic control, respectively. Thus, an *ortho*-stannylated enriched mixture of the methoxy functionalized derivatives *o*-**3a** and α -**3a** (80:20) was prepared by metallation of **1a** quenched with *n*-Bu₃SnCl after 30 min and subsequent chromatographic work-up (Scheme 3). The following transmetallation with *n*-BuLi/tmeda and the repeated reaction with *n*-Bu₃SnCl after 12 h led to the exclusive formation of the α -stannylated product α -**3a**.

2.3. Molecular structure of [Li{CH(SPh)CH₂CH₂Ot-Bu}(tmeda)]

Crystals of [Li{CH(SPh)CH₂CH₂Ot-Bu}(tmeda)] (α -**2c**) suitable for X-ray diffraction analysis were obtained from *n*-pentane at

-10 °C. The compound crystallized in isolated monomeric molecules without unusual intermolecular interactions (shortest distance between non-hydrogen atoms: 3.492(7) Å, C2...C16'). The molecular structure is shown in Fig. 1, selected geometrical parameters are given in Table 3. The primary donor set of Li is built up by two N atoms of the tmeda ligand as well as by the α -C and the O atom of the organo ligand. Thus, α -2c is a typical organolithium inner complex having a distorted tetrahedral coordination of Li. The chelate bindings of the tmeda and the organo ligand give rise to relatively small angles N1-Li-N2 (87.2(3)°) and C7-Li-O (88.0(3)°) with concomitant enlargement of the angles N2-Li-O (131.6(4)°) and N2-Li-C7 (122.3(4)°). Both of the five-membered rings (C₂N₂Li) and (C₃LiO) exhibit an envelope conformation twisted on C17 and C9, respectively. The Li-C7 bond length (2.151(9)Å) is in the expected range [21]. The Li–O bond (1.984(7) Å) was also found to be in the expected range as the comparison with Li-O bonds in other complexes of tetrahedral coordinated lithium showed (median: 1.968 Å, lower/higher quartile: 1.938/2.004 Å; *n* = 131, *n* – number of observations [21]). The Li…S distance of 3.337(1) Å indicates that there are no interactions between these two atoms.

2.4. Lithiation of PhSO₂CH₂CH₂CH₂OR

The γ -OR-functionalized propyl phenyl sulfones, PhSO₂CH₂CH₂-CH₂OR (R = Me, **5a**; *i*-Pr, **5b**), have been obtained by oxidation of the respective sulfides PhSCH₂CH₂CH₂OR **1a**, **b** with acetic acid/ hydrogen peroxide whereas **5c** (R = CPh₃) was received by reaction of PhSO₂CH₂CH₂CH₂OH with Ph₃CCl in presence of DBU (see Section 3). Compounds **5a**-**c** were found to react with *n*-BuLi in *n*-pentane (**5a/b**) or in toluene (**5c**) at room temperature yielding the α -lithiated compounds **6a**-**c** (Scheme 4). In contrast to the sulfides (**1a**-**c**) only α -lithiation and no *ortho*-metallation was observed which is due to the higher acidity of the α -protons in sulfones. For this reason, the metallation could also be performed with *n*-BuLi in absence of an *N*-donor co-ligand.

The lithiated sulfones **6a-c** were isolated in high yields as white to pale vellow powders. They proved to be moisture and air sensitive but less reactive than the analogous lithiated sulfides α -2a-c. All lithiated sulfones were unsoluble in non-coordinating solvents like *n*-pentane or toluene. They showed a decreasing solubility in THF and DMSO ($R = Me > i-Pr > CPh_3$). While the THF solutions could be handled at room temperature without decomposition, in the case of the DMSO solutions a color change from yellow to black within few hours gave proof of a decomposition at room temperature. The identities of the lithiated compounds 6a-c have been confirmed by ¹H and ¹³C NMR spectroscopy. In the case of the methoxy functionalized lithiated sulfone 6a an increase of the $^{1}J(\alpha - ^{13}C, ^{1}H)$ coupling constant by 10 Hz (147 Hz in **6a** vs. 137 Hz in 5a) indicates that the lithium atom is not coordinated to the α -C atom [20a,22] but to the O atoms of the sulforyl group as usually found in lithiated sulfones [9,23–25]. A comparison of the ¹H NMR spectra of the lithiated sulfones 6a-c to the requisite

Scheme 2. Synthesis of α -lithiated γ -OR functionalized sulfides (α -2a-c) by tin-lithium transmetallation.

Scheme 3. To the *ortho*/ α isomerization of the lithiated γ -OMe functionalized sulfide *o*-**3a**.

Fig. 1. Molecular structure of [Li{CH(SPh)CH₂CH₂Ot-Bu}(tmeda)] in crystals of α -2c. The ellipsoides are shown with a probability of 50%. H atoms have been omitted for clarity.

Та	bl	e	3
		-	-

Selected bond lengths (in Å) and angles (in $^\circ)$ of [Li{CH(SPh)CH_2CH_2Ot-Bu}(tmeda)] ($\alpha\text{-}2c$).

Li–C7	2.151 (9)	C7-Li-C8	99.5 (4)
Li–O	1.984 (7)	N1-Li-N2	87.2 (3)
Li–N1	2.191 (8)	N1-Li-O	118.6 (4)
Li–N2	2.111 (9)	N2-Li-O	131.6 (4)
C7–S	1.737 (5)	O-Li-C9	105.9 (3)
C7–C8	1.548 (6)	O-Li-C7	88.0 (3)
C8–C9	1.465 (7)	N1-Li-C7	110.6 (4)
C9–O	1.430 (6)	N2-Li-C7	122.3 (4)

sulfones **5a**–**c** revealed that the most significant highfield shifts were found for the α -protons (1.70–1.75 ppm in **6a**–**c** vs. 3.12–3.22 ppm in **5a**–**c**) while all other signals showed smaller differences. In the ¹³C NMR spectra the most distinct shifts were observed for the signals of the α -C (42.2–45.2 ppm in **6a**–**c** vs. 53.6–53.9 ppm in **5a**–**c**) and *i*-C atoms (152.4–155.8 ppm in **6a**–**c** vs. 139.1–139.2 ppm in **5a**–**c**).

The synthesis of the γ -OR-functionalized stannylated sulfones 7a-c was done by lithiation of the sulfones 5a-c as described above followed by addition of *n*-Bu₃SnCl (Scheme 4). Chromatographic work-up of the reactions mixtures gave the pure α -stannylated products **7a-c** as colorless to pale yellow oils with (isolated) yields of 42-62%. Their identities have been confirmed by microanalysis and ¹H, ¹³C and ¹¹⁹Sn NMR spectroscopy (Table 4). The $^{1}J(^{119}Sn,^{13}C_{Bu})$ coupling constants (337.0–338.9 Hz) were found to be in a very narrow range being in accordance with the requisite couplings in other *n*-Bu₃SnCH(SO₂Ph)CH₂CH₂OR derivatives (R = Men, 336.4 Hz [26]; Bor, 336.9 Hz [14]). As comparison to the structurally similar - but non-OR-functionalized - ligand CH(Me)SO₂Ph (329.2 Hz [27]) and CH(Bn)SO₂Ph (336.9 Hz [27]) revealed, the γ -OR substituent does not significantly affect the electronic influence. On the other hand, the substitution pattern of the α -C atom influences the electronic properties of α -sulfonyl ligands: the ${}^{1}J({}^{119}Sn, {}^{13}C_{Bu})$ coupling constants of the compounds having secondary α -C atoms (329.2–338.9 Hz) lie in-between of those having tertiary (n-Bu₃SnCMe(Et)SO₂Ph, 325.6 Hz [25]) and primary (*n*-Bu₃SnCH₂SO₂Ph, 346.1 Hz [28]) α-C atoms, respectively.

In summary, the investigations gave proof that in lithiation reactions of alkyl phenyl sulfides bearing a Lewis-basic substituent in chelating favored position (γ -OR group) the regioselectivity (α /ortho ratio) can be understood in terms of an inner complex

Scheme 4. Lithiation and stannylation of O-functionalized sulfones.

Table 4 Selected NMR spectroscopic data (δ in ppm, J in Hz) of stannylated sulfones **7a**-**c**.

		$\delta_{\alpha-C}$ (¹ $J_{Sn,C}$)	$\delta_{\alpha-C (Bu)} ({}^{1}J_{Sn,C})$	δ (¹¹⁹ Sn)
7a 7b 7c	Me i-Pr CPh₃	50.9 (129.3) 50.9 (134.5) 51.0 (126.4)	11.9 (338.9) 11.7 (337.6) 11.5 (337.0)	2.6 3.7 2.7

formation that depends on the sterical demand and the electronic properties of the alkoxy substitution. This inner complex formation gives rise to a stabilization of the α -lithiated derivatives over the *ortho*-lithiated ones. Thus, the formation of a proper substrate–alkyllithium complex en route to lithiation seems to be decisive both for *ortho*- and α -lithiation as known for other heteroatom substituted hydrocarbons [29]. In the requisite sulfones exclusively α -lithiated products were obtained due to the higher acidity of the α -protons.

3. Experimental section

3.1. General comments

Organolithium compounds were prepared and handled under purified argon using standard Schlenk techniques. *n*-Pentane, *n*-hexane, diethyl ether, THF, benzene, toluene, toluene- d_8 , benzene- d_6 and THF- d_8 were distilled from sodium benzophenone ketyl. DMSO- d_6 was dried over molecular sieve 4A. NMR spectra were recorded on Varian Gemini 200, Gemini 2000, and Varian 500 spectrometers using the protio impurities and the ¹³C resonances of the deuterated solvents as references for ¹H and ¹³C NMR spectroscopy, respectively. δ (¹¹⁹Sn) is relative to external SnMe₄ in C₆D₆. The preparative centrifugally accelerated thin layer chromatography was made by using a Chromatotron (Harrison Research). Reactions of BrCH₂CH₂CH₂X (X = OH, Br) with KSPh in MeOH afforded PhSCH₂CH₂CH₂X.

3.2. Preparation of PhSCH₂CH₂CH₂OR (**1a**-**d**)

R = Me (1a), *i*-Pr (1b). To the respective alcohol ROH (200 ml) sodium hydride (7.9 g, 0.28 mol) was added slowly. When no further H₂ was liberated, PhSCH₂CH₂CH₂Br (57.8 g, 0.25 mol) was added and the reaction mixture was refluxed for 6 h and stirred at room temperature overnight. The reaction mixture was diluted with water (200 ml), extracted with diethyl ether (3×80 ml) and the combined organic extracts were dried (Na₂SO₄). After filtration and evaporation of the solvent under reduced pressure the residue was distilled in vacuo.

R = Me (1a). Yield: 37.3 g (82%). Bp: 115–118 °C (4 Torr). ¹H NMR (400 MHz, CDCl₃): δ 1.88 (m, 2H, CH₂CH₂CH₂), 2.99 (m, 2H, CH₂SPh), 3.30 (s, 3H, OCH₃), 3.46 (m, 2H, CH₂OMe), 7.13–7.17 (m, 1H, *p*-H, SPh), 7.24–7.28 (m, 2H, *m*-H, SPh), 7.31–7.34 (m, 2H, *o*-H, SPh). ¹³C NMR (100 MHz, CDCl₃): δ 29.5 (s, CH₂CH₂CH₂), 30.5 (s, CH₂SPh), 58.7 (s, OCH₃), 71.0 (s, CH₂OMe), 125.8 (s, *p*-C, SPh), 128.8 (s, *m*-C, SPh), 129.1 (s, *o*-C, SPh), 136.6 (s, *i*-C, SPh).

R = *i*-Pr (**1b**). Yield: 32.1 g (62%). Bp: 124 °C (5 Torr). ¹H NMR (400 MHz, CDCl₃): δ 1.13 (d, ³*J*(H,H) = 6.23 Hz, 6H, CH₃), 1.86 (m, 2H, CH₂CH₂CH₂CH₂), 3.00 (m, 2H, CH₂SPh), 3.30–3.76 (m, 3H, OCH-Me₂ + CH₂O*i*-Pr), 7.12–7.16 (m, 1H, *p*-H, SPh), 7.22–7.29 (m, 2H, *m*-H, SPh), 7.30–7.35 (m, 2H, *o*-H, SPh). ¹³C NMR (100 MHz, CDCl₃): δ 22.1 (s, CH₃), 29.7 (s, CH₂CH₂CH₂), 30.4 (s, CH₂SPh), 66.2 (s, OCH(Me)₂), 71.5 (s, CH₂OCHMe₂), 125.7 (s, *p*-C, SPh), 128.8 (s, *m*-C, SPh), 129.0 (s, *o*-C, SPh), 136.7 (s, *i*-C, SPh).

R = t-Bu (1c). To a stirred mixture of *tert*-butanol (200 ml), phosphoric acid (40 ml, 85%) and sodium sulfate (30 g) at 60 °C PhSCH₂CH₂CH₂OH (18.6 g, 0.1 mol) was added dropwise and then the reaction mixture was refluxed for 12 h. After cooling to room

temperature the mixture was neutralized with aqueous ammonia and diluted with water (150 ml). The aqueous phase was extracted with diethyl ether (3×80 ml) and the combined organic extracts were dried (Na₂SO₄). After evaporation of the solvents the residue was purified by means of column chromatography (silica; *n*-pentane/diethyl ether 3:1). Yield: 14.0 g (63%). Bp: 73–75 °C (0.06 Torr).

¹H NMR (400 MHz, CDCl₃): δ 1.17 (s, 9H, OC(*CH*₃)₃), 1.84 (m, 2H, CH₂CH₂CH₂), 2.99 (m, 2H, *CH*₂SPh), 3.43 (m, 2H, *CH*₂OCCH₃), 7.11– 7.16 (m, 1H, *p*-*H*, SPh), 7.22–7.27 (m, 2H, *m*-*H*, SPh), 7.30–7.33 (m, 2H, *o*-*H*, SPh). ¹³C NMR (100 MHz, CDCl₃): δ 27.6 (s, OC(CH₃)₃), 30.2 (s, CH₂CH₂CH₂), 30.5 (s, ¹*J*(¹³C, ¹H) = 140 Hz, CH₂SPh), 59.8 (s, OC(CH₃)₃), 72.7 (s, CH₂OCCH₃), 125.2 (s, *p*-C, SPh), 128.4 (s, *m*-C, SPh), 129.5 (s, *o*-C, SPh), 136.8 (s, *i*-C, SPh). (Here and in the following C–H coupling constants were obtained from H-coupled ¹³C NMR spectra.)

R = CPh₃ (**1d**). To a stirred solution of PhSCH₂CH₂CH₂OH (12.6 g, 0.08 mol) and chlorotriphenylmethane (25.1 g, 0.09 mol) in dichloromethane (150 ml), 1,8-diazabicyclo[5.4.0]undec-7-ene (5.3 g, 0.04 mol) was added dropwise. After stirring for 2 days the solution was diluted with water (300 ml). The aqueous phase was extracted with dichloromethane (3×150 ml) and the combined organic extracts were dried (Na₂SO₄). After filtration and evaporation of the solvent under reduced pressure the residue was purified by means of column chromatography (silica; *n*-pentane/diethyl ether 1:1). Yield: 7.6 g (30%).

¹H NMR (400 MHz, CDCl₃): δ 1.88–1.94 (m, 2H, CH₂CH₂CH₂), 3.02 (m, 2H, CH₂SPh), 3.18 (m, 2H, CH₂OCPh₃), 7.12–7.42 (m, 12H, *p*-H, SPh + *p*-H, OCPh₃ + *m*-H, SPh + *m*-H, OCPh₃ + m, 8H, *o*-H, SPh + *o*-H, OCPh₃). ¹³C NMR (100 MHz, CDCl₃): δ 30.0 s, (s, CH₂CH₂CH₂), 30.7 (s, CH₂SPh), 62.2 (s, CH₂OCPh₃), 86.6 (s, Ph₃CO), 125.7 (s, *p*-C, SPh), 126.9 (s, *p*-C, Ph₃CO), 127.7 (s, *m*-C, SPh), 128.7 (s, *o*-C, SPh), 128.8 (s, *m*-C, Ph₃CO), 129.1 (s, *o*-C, Ph₃CO), 136.6 (s, *i*-C, SPh), 144.2 (s, *i*-C, Ph₃CO).

3.3. Preparation of n-Bu₃SnCH(SPh)CH₂CH₂OR ($R = Me, \alpha$ -**3a**; i-Pr, α -**3b**; t-Bu, α -**3c**; CPh₃, α -**3d**)

At -78 °C to a stirred solution of *n*-BuLi (0.01 mol, 1.5 M in *n*-hexane) and tmeda (1.16 g, 0.01 mol) in *n*-pentane (20 ml) the respective compound **1a-d** (0.01 mol) was added slowly via a syringe. After stirring for 24 h at room temperature *n*-Bu₃SnCl (3.2 g, 0.01 mol) was added dropwise. To the suspension obtained a saturated aqueous solution of NH₄Cl (15 ml) was added. The aqueous phase was extracted with diethyl ether (3 × 20 ml). After drying the combined organic extracts (Na₂SO₄), filtration, and evaporation of the solvents the $\alpha/ortho$ ratios in the residues were determined by integration of the requisite ¹¹⁹Sn NMR signals. In the case of **3a**-**c** the α -products (α -**3a**-**c**) have been obtained in a pure state by vacuum distillation. Due to the high boiling point α -**3d** could not be obtained in this way.

R = Me (α-**3a**). Yield: 3.80 g (81%). Bp: 137–141 °C (0.05 Torr). Anal. Calc. C₂₂H₄₀OSSn (471.33): C, 56.06; H, 8.55. Found: C, 56.67; H, 7.84%. ¹H NMR (400 MHz, CDCl₃): δ 0.93 (t, ³*J*(H,H) = 7,47 Hz, 9H, δ-CH₃, Bu), 1.10–1.29 (m, 6H, α-CH₂, Bu), 1.32–1.42 (m, 6H, γ-CH₂, Bu), 1.54–1.70 (m, 6H, β-CH₂, Bu), 1.90–1.94 (m, 2H, CH₂CH₂CH), 2.98–3.05 (m + d, ²*J*(¹¹⁹Sn,H) = 52.8 Hz, 1H, SnCH), 3.04 (s, 3H, OCH₃), 3.14–3.21 (m, 2H, CH₂OMe), 7.49–7.53 (m, 1H, *p*-*H*, SPh + m, 2H, *m*-*H*, SPh), 7.81–7.84 (m, 2H, *o*-*H*, SPh). ¹³C NMR (125 MHz, CDCl₃): δ 10.2 (s + d + d, ¹*J*(¹¹⁷Sn,C) = 313.8 Hz, ¹*J*(¹¹⁹Sn,C) = 328.7 Hz, α-C, Bu), 13.7 (s, δ-C, Bu), 25.1 (s + d, ¹*J*(¹¹⁹Sn,C) = 250.8 Hz, SnCH), 27.4 (s + d, ³*J*(¹¹⁹Sn,C) = 58.1 Hz, γ-C, Bu), 29.1 (s + d, ²*J*(¹¹⁹Sn,C) = 19.7 Hz, β-C, Bu), 33.4 (s, CH₂CH₂CH), 58.5 (s, OCH₃), 71.1 (s, CH₂OMe), 125.3 (s, *p*-C, SPh), 128.4 (s, *m*-C, SPh), 128.6 (s, *o*-C, SPh), 138.9 (s, *i*-C, SPh). ¹¹⁹Sn NMR (186 MHz, THF-*d*₈): δ –10.7 (s).

R = *i*-Pr (α-**3b**). Yield: 3.45 g (69%). Bp: 158–161 °C (0.03 Torr). Anal. Calc. for $C_{24}H_{44}OSSn$ (499.38): C, 57.76; H, 8.82. Found: C,

57.78; H, 8.33%. ¹H NMR (400 MHz, CDCl₃): δ 0.90 (t, ³ *J*(H,H) = 7.48 Hz, 9H, δ-CH₃, Bu), 0.97–1.01 (m, 6H, α-CH₂, Bu), ${}^{3}J(H,H) = 6.10 \text{ Hz}/{}^{3}J(H,H) = 6.10 \text{ Hz},$ 1.09/1.10 (d/d. 3H/3H. CH₂OCH(CH₃)₂), 1.29–1.37 (m, 6H, γ -CH₂, Bu), 1.49–1.57 (m, 6H, β -CH₂, Bu), 2.04–2.08 (m, 2H, CH₂CH₂CH), 3.06 (m + d, ${}^{2}J({}^{119}Sn,H) = 52.0 \text{ Hz}, 1H, SnCH), 3.41-3.48 (m, 1H + 2H,)$ CH₂OCH(CH₃)₂ + CH₂Oi-Pr), 7.10-7.14 (m, 1H, p-H, SPh), 7.23-7.27 (m, 2H, m-H, SPh), 7.34-7.36 (m, 2H, o-H, SPh). ¹³C NMR (125 MHz, CDCl₃): δ 10.0 (s + d + d, ¹J(¹¹⁷Sn,C) = 311.2 Hz, ${}^{1}J({}^{119}Sn,C) = 325.9 \text{ Hz}, \alpha - C, Bu), 13.7 (s, \delta - C, Bu), 22.0/22.2 (s/s, \delta - C, Bu)$ $CH_2OCH(CH_3)_2$), 24.9 (s + d, ${}^{1}J({}^{119}Sn,C) = 249.2$ Hz, SnCH), 27.4 ${}^{3}J({}^{119}\text{Sn,C}) = 58.8 \text{ Hz},$ γ-C, (s + d. Bu), (s + d. 29.1 ${}^{2}J({}^{119}Sn,C) = 19.7 \text{ Hz}, \beta-C, Bu), 34.3 (s, CH_{2}CH_{2}CH), 66.9 (s + d,$ ${}^{3}J({}^{119}Sn,C) = 20.7 \text{ Hz}, CH_{2}OCH(CH_{3})_{2}), 71.5 (s, CH_{2}OCH(CH_{3})_{2}),$ 125.3 (s, p-C, SPh), 128.4 (s, m-C, SPh), 128.6 (s, o-C, SPh), 139.1 (s, *i*-C, SPh), ¹¹⁹Sn NMR (186 MHz, CDCl₃); δ -9.7 (s),

R = t-Bu (α -**3c**). Yield: 2.58 g (49%). Bp: 176 °C (0.01 Torr). Anal. Calc. for C₂₅H₄₆OSSn (513.05): C, 58.82; H, 9.30. Found: C, 58.52; H, 8.97%. ¹H NMR (400 MHz, CDCl₃): δ 0.79 (t, ³J(H,H) = 7.26 Hz, 9H, δ -CH₃, Bu), 0.86–0.90 (m, 6H, α-CH₂, Bu), 1.02 (s, 9H, CH₂OC(CH₃)₃), 1.18-1.27 (m, 6H, γ-CH₂, Bu), 1.39-1.47 (m, 6H, β-CH₂, Bu), 1.91-1.95 (m, 2H, CH₂CH₂CH), 2.95 (m + d, ${}^{2}J({}^{119}Sn,H) = 52.3$ Hz, 1H. SnCH), 3.17-3.23/3.25-3.32 (m/m, 1H/1H, CH₂Ot-Bu), 7.01-7.02 (m, 1H, p-H, SPh), 7.11–7.15 (m, 2H, m-H, SPh), 7.24–7.26 (m, 2H, o-H, SPh). ¹³C NMR (100 MHz, CDCl₃): δ 10.0 (s + d + d, ${}^{1}J({}^{117}\text{Sn,C}) = 310.8 \text{ Hz}, {}^{1}J({}^{119}\text{Sn,C}) = 325.6 \text{ Hz}, \alpha$ -C, Bu), 13.6 (s, δ -C, Bu), 24.9 (s + d, ${}^{1}J({}^{119}Sn,C) = 247.5$ Hz, SnCH), 27.5 (s + d, ${}^{3}I({}^{119}Sn,C) = 57.5 \text{ Hz}, \gamma-C, \text{ Bu}), 27.6 \text{ (s, } CH_2OC(CH_3)_3), 29.0 \text{ (s + d,}$ $^{2}J(^{119}\text{Sn,C}) = 20.6 \text{ Hz}, \beta$ -C, Bu), 34.9 (s, CH₂CH₂CH), 60.8 (s, CH₂Ot-Bu), 72.6 (s, CH₂OC(CH₃)₃), 125.3 (s, p-C, SPh), 128.4 (s, m-C, SPh), 128.5 (s, o-C, SPh), 139.1 (s, i-C, SPh). ¹¹⁹Sn NMR (186 MHz, CDCl₃): δ –9.5 (s).

R = CPh₃. ¹¹⁹Sn NMR (186 MHz, CDCl₃): α-**3d** δ –9.7 (s); ο-**3d** δ –43.6 (s).

3.4. Ortho-stannylated and -lithiated sulfides

Ortho-stannylated enriched mixtures of *o*-**3a** ($o:\alpha = 60-80$: 40–20), *o*-**3b** ($o:\alpha = 50:50$) and *o*-**3c** ($o-3c:\alpha-3c:1c = 3:1:10$) were prepared by lithiation of **1a** (lithiation time: 30 min), **1b** and **1c** (lithiation times: 3 h), respectively, as described above followed by a subsequent chromatographic work-up using preparative centrifugally accelerated thin layer chromatography (eluent: *n*-pentane).

n-Bu₃Sn(o-C₆H₄SCH₂CH₂CH₂OR) (R = Me, o-**3a**; *i*-Pr, o-**3b**; *t*-Bu, o-**3c**).

R = Me, *o*-**3a**: ¹H NMR (400 MHz, CDCl₃): δ 0.95 (t, ³*J*(H,H) = 7,33 Hz, 9H, δ-CH₃, Bu), 0.99–1.23 (m, 6H, α-CH₂, Bu), 1.35–1.43 (m, 6H, γ-CH₂, Bu), 1.54–1.70 (m, 6H, β-CH₂, Bu), 1.86–1.96 (m, 2H, CH₂CH₂CH₂), 3.00 (m, 2H, PhSCH₂), 3.30 (s, 3H, OCH₃), 3.45 (m, 2H, CH₂OMe), 7.11–7.15 (m, 1H, H4, C₆H₄), 7.22–7.26 (m, 2H, H5 + H3, C₆H₄), 7.35–7.39 (m, 1H, H4, C₆H₄), ¹³C NMR (125 MHz, CDCl₃): δ 10.7 (s + d + d, ¹*J*(¹¹⁷Sn,C) = 330.3 Hz, ¹*J*(¹¹⁹Sn,C) = 345.7 Hz, α-C, Bu), 13.5 (s, δ-C, Bu), 27.2 (s + d, ³*J*(¹¹⁹Sn,C) = 60.5 Hz, γ-C, Bu), 28.9 (s + d, ²*J*(¹¹⁹Sn,C) = 19.5 Hz, β-C, Bu), 29.1 (s, CH₂CH₂CH₂), 30.0 (s, PhSCH₂), 58.2 (s, OCH₃), 70.6 (s, CH₂OMe), 125.5 (s, C6, C₆H₄), 128.6/128.7/136.5 (s/s/s, C3,C4,C5, C₆H₄), 144.4 (s + d, ²*J*(¹¹⁹Sn,C) = 23.0 Hz, C2–S, C₆H₄), 145.7 (s + d, ¹*J*(¹¹⁹Sn,C) = 392.8 Hz, C1–Sn, C₆H₄). ¹¹⁹Sn NMR (186 MHz, CDCl₃): δ –43.5 (s).

R = *i*-Pr, o-**3b**:¹H NMR (400 MHz, CDCl₃): δ 0.91 (t, ³*J*(H,H) = 7.30 Hz, 9H, δ-CH₃, Bu), 0.92–0.96 (m, 6H, α-CH₂, Bu), 1.16 (d, ³*J*(H,H) = 6.18 Hz, 6H, CH₂OCH(CH₃)₂), 1.34–1.39 (m, 6H, γ-CH₂, Bu), 1.54–1.62 (m, 6H, β-CH₂, Bu), 1.86–1.95 (m, 2H, CH₂CH₂CH₂), 3.02 (m, 2H, PhSCH₂), 3.49–3.57 (m, 1H + 2H, CH₂OCH(CH₃)₂ + CH₂Oi-Pr), 7.11–7.16 (m, 1H, H4, C₆H₄), 7.24– 7.28 (m, 2H, *H*5 + *H*3, C₆H₄), 7.37–7.39 (m, 1H, *H*6, C₆H₄). ¹³C NMR (125 MHz, CDCl₃): δ 10.8 (s + d + d, ¹*J*(¹¹⁷Sn,C) = 330.3 Hz, ¹*J*(¹¹⁹Sn,C) = 345.8 Hz, α -C, Bu), 13.6 (s, δ -C, Bu), 22.0 (s, CH₂OCH(CH₃)₂), 27.3 (s + d, ³*J*(¹¹⁹Sn,C) = 60.7 Hz, γ -C, Bu), 29.0 (s + d, ²*J*(¹¹⁹Sn,C) = 19.6 Hz, β -C, Bu), 29.8 (s, CH₂OCH(CH₃)₂), 32.3 (s, PhSCH₂), 66.3 (s, CH₂OCH(CH₃)₂), 71.3 (s, CH₂OCH(CH₃)₂), 125.4 (s, C6, C₆H₄), 128.6/128.7/136.5 (s, C3, C₆H₄) (s/s/s, C3,C4,C5, C₆H₄), 144.6 (s + d, ²*J*(¹¹⁹Sn,C) = 23.1 Hz, C2–S, C₆H₄), 145.8 (s + d, ¹*J*(¹¹⁹Sn,C) = 391.3 Hz, C1–Sn, C₆H₄). ¹¹⁹Sn NMR (186 MHz, CDCl₃): δ –43.4 (s).

R = t-Bu, o-**3c**: ¹H NMR (400 MHz, CDCl₃): δ 0.92 (t, ³J(H,H) = 7.30 Hz, 9H, δ-CH₃, Bu), 0.92–0.96 (m, 6H, α-CH₂, Bu), 1.20 (s, 9H, CH₂OC(CH₃)₃), 1.34–1.39 (m, 6H, γ-CH₂, Bu), 1.54– 1.62 (m, 6H, β-CH₂, Bu),1.84–1.91 (m, 2H, CH₂CH₂CH₂), 3.02 (m, 2H, PhSCH₂), 3.46 (m, 2H, CH₂Ot-Bu), 7.11–7.17 (m, 1H, H4, C₆H₄), 7.23–7.28 (m, 2H, H5 + H3, C₆H₄), 7.38–7.40 (m, 1H, H6, C₆H₄). ¹³C NMR (125 MHz, CDCl₃): δ 10.8 (s+d+d, ¹J(¹¹⁷Sn,C) = 330.4 Hz, ¹J(¹¹⁹Sn,C) = 345.8 Hz, α-C, Bu), 13.6 (s, δ-C, Bu), 27.3 (s+d, ³J(¹¹⁹Sn,C) = 60.8 Hz, γ-C, Bu), 27.4 (s, CH₂OC(CH₃)₃), 29.1 (s+d, ²J(¹¹⁹Sn,C) = 19.6 Hz, β-C, Bu), 31.5 (s, CH₂OC(CH₃)₃), 125.3 (s, C6, C₆H₄), 128.68/128.75/136.5 (s/s/s, C3,C4,C5, C₆H₄), 144.8 (s+d, ²J(¹¹⁹Sn,C) = 23.2 Hz, C2–Sn, C₆H₄), 145.8 (s, C1–Sn, C₆H₄). ¹¹⁹Sn NMR (186 MHz, CDCl₃): δ –43.6 (s).

3.4.1. NMR experiments

In a Schlenk tube the solvent of a solution of *n*-BuLi (ca 0.5 mmol) in *n*-hexane was removed in vacuo. To the residue a 1:1 mixture of the requisite sulfide **1b/1c** (0.5 mmol) and tmeda (0.5 mmol) in benzene- d_6 (ca 0.5 ml) was added via a syringe. Then the reaction mixture was transferred to a NMR tube which was sealed by melting.

 $[Li(o-C_6H_4SCH_2CH_2CH_2OR)(tmeda)] (R = i-Pr, o-2b; t-Bu, o-2c).$

R = i-Pr (o-**2b**). ¹³C NMR (50 MHz, benzene- d_6): δ 22.0 (s, OCH(CH_3)₂), 30.4 (s, CH₂CH₂CH₂), 34.0 (s, PhSCH₂), 46.1 (s, NCH₃, tmeda), 56.9 (s, CH₂N, tmeda), 66.9 (s, CH₂Oi-Pr), 71.4 (s, OCH(CH₃)₂), 121.6/122.3/125.5/141.8 (s/s/s/s, C₆H₄), 151.1 (s, C–S, C₆H₄), C–Li not found due to bad signal-to-noise ratio.

R = t-Bu (o-**2c**). ¹³C NMR (50 MHz, benzene- d_6): δ 27.0 (s, OC(CH₃)₃), 30.9 (s, CH₂CH₂CH₂), 34.6 (s, PhSCH₂), 46.0 (s, NCH₃, tmeda), 57.4 (s, CH₂N, tmeda), 60.6 (s, CH₂Ot-Bu), 73.4 (s, OC(CH₃)₃), 119.3/121.5/125.1/141.4 (s/s/s/s, C₆H₄), 152.0 (s, C-S, C₆H₄), 186.1 (s, C-Li, C₆H₄).

3.5. Preparation of [Li{CH(SPh)CH₂CH₂OR}(tmeda)] ($R = Me, \alpha - 2a$; i-Pr, $\alpha - 2b$; t-Bu, $\alpha - 2c$)

At -78 °C to a stirred solution of *n*-BuLi (0.01 mol, 1.5 M in *n*-hexane) and tmeda (1.16 g, 0.01 mol) in *n*-pentane (20 ml) the respective tin compound **3a**–**c** (0.01 mol) was added slowly via a syringe. The reaction mixture was stirred for 2 h at this temperature and then stirred overnight at room temperature. The yellow-ish precipitate was filtered off, washed with cold *n*-pentane (4 × 10 ml) and dried in vacuo.

R = Me (α-**2a**). Yield: 2.68 g (88%). ¹H NMR (400 MHz, THF-*d*₈): δ 0.88–0.92 (m, 1H, CHLi), 2.12 (s, br, 2H, CH₂CH₂ CHLi), 2.16 (s, 12H, CH₂N(CH₃)₂, tmeda), 2.31 (s, 4H, CH₂N(CH₃)₂, tmeda), 3.35 (s, 3H, CH₃O), 3.49 (s, br, 2H, CH₃OCH₂), 6.68–6.72 (m, 1H, *p*-H, SPh), 6.96–7.00 (m, 2H, *m*-H, SPh), 7.10–7.12 (m, 2H, *o*-H, SPh). ¹³C NMR (100 MHz, THF-*d*₈): δ 15.5 (s, LiCH), 36.1 (s, CHCH₂CH₂), 46.2 (s, N(CH₃)₂ tmeda), 58.5 (s, CH₂OCH₃), 58.8 (s, CH₂N tmeda), 76.4 (s, CH₂OMe), 121.3 (s, *p*-C, SPh), 125.5 (s, *o*-C, SPh), 127.8 (s, *m*-C, SPh), 152.1 (s, *i*-C, SPh).

R = *i*-Pr (α-**2b**). Yield: 1.54 g (51%). ¹H NMR (400 MHz, THF-*d*₈): δ 0.88–0.92 (m, 1H, CHLi), 1.18 (d, ³*J*(H,H) = 6.02 Hz, 6H, OCH(CH₃)₂), 2.14 (s, br, 2H, CH₂CH₂CHLi), 2.15 (s, 12H, NCH₃, tmeda), 2.31 (s, 4H, CH_2N , tmeda), 3.57 (s, br, 2H, CH_2Oi -Pr), 3.66 (quin, ${}^{3}J(H,H) = 6.02$ Hz, 1H, $OCH(CH_3)_2$), 6.69–6.71 (m, 1H, *p*-H, SPh), 6.95–6.99 (m, 2H, *m*-H, SPh), 7.10–7.12 (m, 2H, *o*-H, SPh). ${}^{13}C$ NMR (100 MHz, THF-*d*₈): δ 15.8 (s, CHLi), 22.4 (s, OCH(CH₃)₂), 36.6 (s, CH₂CH₂CHLi), 46.2 (s, NCH₃, tmeda), 58.9 (s, CH₂N, tmeda), 71.5 (s, CH₂Oi-Pr), 72.5 (s, OCH(CH₃)₂), 121.2 (s, *p*-C, SPh), 125.5 (s, *m*-C, SPh), 127.8 (s, *p*-C, SPh), 152.3 (s, *i*-C, SPh).

R = t-Bu (α-**2c**). Yield: 3.06 g (89%). ¹H NMR (500 MHz, THF-*d*₈): δ 0.89 (m, 1H, CHLi), 1.15 (s, 9H, (CH₃)₃CO), 2.15 (s, 12H, CH₂N(CH₃)₂, tmeda), 2.31 (s, 4H CH₂N(CH₃)₂, tmeda), 2.49 (s, br, 2H, CH₂CH₂CHLi), 3.51 (s, br, 2H, CH₂Ot-Bu), 6.65–6.69 (m, 1H, *p*- *H*, SPh), 6.95–6.99 (m, 2H, *m*-*H*, SPh), 7.09–7.12 (m, 2H, *o*-*H*, SPh). ¹³C NMR (100 MHz, benzene-*d*₆): δ 15.8 (s, ¹*J*(¹³C,¹H) = 130 Hz, CHLi), 27.8 (s, (CH₃)₃CO), 36.9 (s, CH₂CH₂CHLi), 46.2 (s, CH₂N(CH₃)₂, tmeda), 58.9 (s, CH₂N(CH₃)₂, tmeda), 64.7 (s, (CH₃)₃CO), 74.1 (s, CH₂Ot-Bu), 121.2 (s, *p*-*C*, SPh), 129.5 (s, *m*-*C*, SPh). 129.5 (s, *o*-*C*, SPh), 152.4 (s, *i*-*C*, SPh).

3.6. Preparation of [Li{CH(SPh)CH₂CH₂OR}] (R = Me, α -4a; i-Pr, α -4b)

At -78 °C to a stirred solution of *n*-BuLi (0.01 mol, 1.5 m in *n*-hexane) in *n*-pentane (20 ml) the respective tin compound **3a–b** (0.01 mol) was added slowly via a syringe. The reaction mixture was stirred for 2 h at this temperature and then stirred overnight at room temperature. The yellowish precipitate was filtered off, washed with *n*-pentane (4 × 10 ml) and dried in vacuo.

R = Me (α-**4a**). Yield: 1.69 g (90%). ¹H NMR (200 MHz, THF-*d*₈): δ 0.86–0.90 (m, br, *CHL*i), 2.08–2.15 (m, br, 2H, CH₂CH₂CH₂CHLi), 3.35 (s, 3H, *CH*₃O), 3.49 (s, br, 2H, *CH*₂OMe), 6.66–6.74 (m, 1H, *p*-*H*, SPh), 6.94–7.10 (m, 2H, *m*-*H*, SPh), 7.12–7.14 (m, 2H, *o*-*H*, SPh). ¹³C NMR (50 MHz, THF-*d*₈): δ 15.35 (s, *CHL*i), 36.1 (s, *CH*₂CH₂CHLi), 58.5 (s, *CH*₃O), 76.3 (s, *CH*₃OMe), 121.3 (s, *p*-*C*, SPh), 125.5 (*o*-*C*, SPh), 127.8 (s, *m*-*C*, SPh), 152.1 (s, *i*-*C*, SPh).

R = *i*-Pr (α-**4b**). Yield: 1.90 g (90%). ¹H NMR (400 MHz, THF-*d*₈): δ 0.83–0.93 (m, 1H, CHLi), 1.17 (d, ³*J*_{H,H} = 6.23 Hz, 6H, CH₂OCH(CH₃)₂), 2.13 (s, br, 2H, CH₂CH₂CHLi), 3.53 (s, br, 2H, CH₂Oi-Pr), 3.61 (sept, ³*J*_{H,H} = 6.02 Hz, 1H, CH₂OCH(CH₃)₂), 6.66– 6.71 (m, 1H, *p*-H, SPh), 6.91–7.09 (m, 2H, *m*-H, SPh), 7.11–7.16 (m, 2H, *o*-H, SPh). ¹³C NMR (100 MHz, THF-*d*₈): δ 15.7 (s, CHLi), 22.4/22.4 (s/s, CH₂OCH(CH₃)₂), 36.6 (s, CH₂CH₂CHLi), 71.4 (s, CH₂Oi-Pr), 72.5 (s, CH₂OCH(CH₃)₂), 121.2 (s, *p*-C, SPh), 125.4 (s, *o*-*C*, SPh), 127.7 (s, *m*-C, SPh), 152.3 (s, *i*-C, SPh).

3.7. Preparation of PhSO₂CH₂CH₂CH₂OR (R = Me, 5a; i-Pr, 5b)

To a stirred mixture of the sulfide **1a** or **1b** (0.05 mol) in acetic acid (150 ml), H_2O_2 (40 ml, 30% in water) was added dropwise. After stirring for 4 h at room temperature and for 30 min at 90 °C, the reaction mixture was poured on ice (100 g). The aqueous phase was extracted with toluene (4 × 10 ml). The combined organic phases were dried (Na₂SO₄) and after filtration the solvents were evaporated under reduced pressure. The residues proved to be pure (>98%) and were used without further purification.

R = Me (**5a**). Yield: 9.9 g (93%). ¹H NMR (400 MHz, CDCl₃): δ 1.96–1.98 (m, 2H, CH₂CH₂CH₂), 3.14–3.22 (m, 2H, CH₂SO₂Ph), 3.23 (s, 3H, OCH₃), 3.36–3.39 (m, 2H, CH₂OMe), 7.51–7.55 (m, 2H, *m*-H, SO₂Ph), 7.59–7.64 (m, 1H, *p*-H, SO₂Ph), 7.86–7.89 (m, 2H, *o*-H, SO₂Ph). ¹³C NMR (100 MHz, CDCl₃): δ 23.3 (s, CH₂CH₂CH₂), 53.6 (s, ¹J(¹³C,¹H) = 137 Hz, CH₂SO₂Ph), 58.6 (s, CH₂OMe), 70.2 (s,CH₃O), 128.0 (s, *o*-C, SO₂Ph), 129.2 (s, *m*-C, SO₂Ph), 133.6 (s, *p*-*C*, SO₂Ph), 139.2 (s, *i*-C, SO₂Ph).

R = *i*-Pr (**5b**). Yield: 9.1 g (88%). ¹H NMR (400 MHz, CDCl₃): δ 1.05 (d, ³*J*(H,H) = 6,10 Hz, 6H, CH₂OCH(CH₃)₂), 1.88–1.94 (m, 2H, CH₂CH₂CH₂), 3.15–3.18 (m, 2H, CH₂SO₂Ph), 3.37–3.41 (m, 2H, CH₂O*i*-Pr), 3.44 (qui, ³*J*(H,H) = 6,10 Hz, 1H, CH₂OCH(CH₃)₂), 7.51–7.54 (m, 2H, *m*-H, SO₂Ph), 7.59–7.63 (m, 1H, *p*-H, SO₂Ph), 7.86– 7.89 (m, 2H, o-H, SO₂Ph). ¹³C NMR (125 MHz, CDCl₃): δ 21.9 (s, CH₂OCH(CH₃)₂), 23.6 (s, CH₂CH₂CH₂), 53.6 (s, CH₂SO₂Ph), 65.4 (s, CH₂O*i*-Pr), 71.6 (s, CH₂OCH(CH₃)₂), 128.0 (s, o-C, SO₂Ph), 129.2 (s, o-C, SO₂Ph), 133.6 (s, p-C, SO₂Ph), 139.2 (s, *i*-C, SO₂Ph).

3.8. Preparation of PhSO₂CH₂CH₂CH₂OCPh₃ (**5c**)

At room temperature to a stirred solution of PhSO₂CH₂CH₂CH₂CH₂OH (5.0 g, 0.03 mol) and Ph₃CCl (8.4 g, 0.03 mol) in dichloromethane (150 ml), 1,8-diazabicyclo[5.4.0]undec-7-ene (5.3 g, 0.04 mol) was added dropwise. After stirring for 2 days at this temperature, the solution was diluted with water (300 ml). The aqueous phase was extracted with dichloromethane (3×150 ml) and the combined organic extracts were dried (Na₂SO₄). After filtration and evaporation of the solvent under reduced pressure the residue was purified by means of column chromatography (silica; *n*-pen-tane/diethyl ether 3:1). Yield: 5.1 g (46%).

¹H NMR (400 MHz, CDCl₃): δ 1.91–1.98 (m, 2H, CH₂CH₂CH₂), 3.12 (m, 2H, CH₂OCPh₃), 3.18–3.21 (m, 2H, CH₂SO₂Ph), 7.05–7.28 (m, 3H + 6H, *p*-H + *m*-H, CPh₃), 7.29–7.39 (m, 6H, *o*-H, CPh₃), 7.52–7.56 (m, 2H, *m*-H, SO₂Ph), 7.62–7.66 (m, 1H, *p*-H, SO₂Ph), 7.87–7.90 (m, 2H, *o*-H, SO₂Ph), ¹³C NMR (100 MHz, CDCl₃): δ 23.8 (s, CH₂CH₂CH₂), 53.9 (s, CH₂SO₂Ph), 61.5 (s, CH₂OCPh₃), 86.8 (s, OCPh₃), 127.1 (s, *p*-C, CPh₃), 127.8 (s, *m*-C, CPh₃), 128.1 (s, *o*-C, SO₂Ph), 139.1 (s, *i*-C, SO₂Ph), 143.8 (s, *i*-C, CPh₃).

3.9. Preparation of Li[CH(SO₂Ph)CH₂CH₂OR] (R = Me, **6a**; i-Pr, **6b**; CPh₃, **6c**)

At room temperature to a stirred solution of *n*-BuLi (0.01 mol, 1.5 M in *n*-hexane) in *n*-pentane (20 ml) (or toluene in the case of **6c**) the respective sulfone **5a**–**c** (0.01 mol) was added slowly via a syringe. After stirring for 24 h the yellowish precipitate was filtered off, washed with *n*-pentane (3×10 ml) and dried in vacuo.

R = Me (**6a**). Yield: 1.78 g (81%). ¹H NMR (400 MHz, DMSO-*d*₆): *δ* 1.74 (m, 1H, CH₂CH₂CH), 1.89 (m, 2H, CH₂CH₂CH), 2.98 (m, 2H, CH₂OMe), 3.07 (s, 3H, OCH₃), 7.04–7.09 (m, 1H, *p*-H, SO₂Ph), 7.17–7.20 (m, 2H, *m*-H, SO₂Ph), 7.49–7.50 (m, 2H, *o*-H, SO₂Ph). ¹³C NMR (100 MHz, THF-*d*₈): *δ* 28.2 (s, CH₂CH₂CH), 42.8 (s, ¹J(¹³C,¹H) = 147 Hz, CH₂CH₂CH), 58.6 (s, OCH₃), 76.3 (s, CH₂OMe), 125.9 (s, *o*-C, SO₂Ph). 127.1 (s, *m*-C, SO₂Ph), 128.5 (s, *p*-C, SO₂Ph). 152.4 (s, *i*-C, SO₂Ph).

R = *i*-Pr (**6b**). Yield: 1.96 g (79%). ¹H NMR (400 MHz, DMSO-*d*₆): δ 0.95 (d, ³*J*(H,H) = 6.02 Hz, 6H, OCH(CH₃)₂), 1.70 (s, br, 1H, CH₂CH₂CH), 1.87 (m, 2H, CH₂CH₂CH), 2.98 (m, 2H, CH₂O*i*-Pr), 3.34 (m, 1H, OCH(CH₃)₂), 7.05–7.09 (m, 2H, *m*-H, SO₂Ph), 7.17– 7.19 (m, 2H + 1H, *o*-H + *p*H, SO₂Ph). ¹³C NMR (100 MHz, DMSO *d*₆): δ 22.0 (s, OCH(CH₃)₂), 28.5 (s, CH₂CH₂CH), 42.2 (s, CH₂CH₂CH), 69.6 (s, CH₂O*i*-Pr),71.1 (s, OCH(CH₃)₂), 125.8 (s, *o*-C, SO₂Ph), 127.2 (s, *m*-C, SO₂Ph), 129.2 (s, *p*-C, SO₂Ph), 155.4 (s, *i*-C, SO₂Ph).

R = CPh₃ (**6c**). Yield: 3.5 g (78%). ¹H NMR (400 MHz, DMSO-*d*₆): δ 1.75 (s, br, 1H, CH₂CH₂CH), 2.11 (s, br, 2H, CH₂CH₂CH), 2.29 (s, br, 2H, CH₂OCPh₃) 7.05–7.30 (m, br, 5H + 15H, *p*-, *m*-, *o*-*H*, SO₂Ph + *p*-, *m*-, *o*-*H*, OCPh₃). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 21.0 (s, CH₂CH₂CH), 45.2 (s, CH₂CH₂CH), 67.0 (s, CH₂OCPh₃), 85.2 (s, OCPh₃), 125.1 (s, *p*-C, CPh₃), 127.5 (s, *m*-C, CPh₃), 128.0 (s, *m*-C, SO₂Ph), 128.1 (s, *o*-C, CPh₃), 128.7 (s, *o*-C, SO₂Ph), 137.2 (s, *p*-C, SO₂Ph), 144.5 (s, *i*-C, CPh₃), 155.8 (s, *i*-C, SO₂Ph).

3.10. Preparation of *n*-Bu₃SnCH(SO₂Ph)CH₂CH₂OR (*R* = Me, **7a**; *i*-Pr, **7b**; CPh₃, **7c**)

At room temperature to a stirred solution of *n*-BuLi (0.01 mol, 1.5 M in *n*-hexane) in *n*-pentane (20 ml) (or toluene in the case of **7c**) the respective sulfone **5a**–**c** (0.01 mol) was added. After

24 h *n*-Bu₃SnCl (3.2 g, 0.01 mol) was added slowly. To the suspension obtained water was added (15 ml) and the aqueous phase was extracted with diethyl ether $(3 \times 15$ ml). After drying the combined organic extracts (Na₂SO₄) and filtration the solvent was evaporated. The residues were purified by preparative centrifugal thin layer chromatography (silica; *n*-pentane/diethyl ether 3:1).

R = Me (**7a**). Yield: 3.12 g (62%). Anal. Calc. for C₂₂H₄₀O₃SSn (503.02): C, 52.47; H, 7.95. Found: C, 52.11; H, 7.53%. ¹H NMR (500 MHz, CDCl₃): δ 0.91 (t, ³*J*(H,H) = 7.33 Hz, 9H, δ-CH₃, Bu), 1.12–1.19 (m, 6H, α-CH₂, Bu), 1.33–1.39 (m, 6H, γ-CH₂, Bu), 1.53–1.62 (m, 6H, β-CH₂, Bu), 1.92–1.96 (m, 2H, CH₂CHSN), 3.03–3.06 (m + d, ²*J*(¹¹⁹Sn,H) = 140.9 Hz, 1H, SnCH), 3.05 (s, 3H, CH₃O), 3.06–3.12 (m, 2H, CH₂OMe), 7.47–7.50 (m, 2H, *m*-H, SO₂Ph), 7.53–7.55 (m, 1H, *p*-H, SO₂Ph), 7.82–7.84 (m, 2H, *o*-H, SO₂Ph). ¹³C NMR (100 MHz, CDCl₃): δ 11.9 (s + d + d, ¹*J*(¹¹⁷Sn,C) = 323.9 Hz, ¹*J*(¹¹⁹Sn,C) = 338.9 Hz, α-C, Bu), 13.7 (s, δ-C, Bu), 27.3 (s + d, ³*J*(¹¹⁹Sn,C) = 19.4 Hz, γ-C, Bu), 50.9 (s + d, ¹*J*(¹¹⁹Sn,C) = 129.3 Hz, CHSn), 58.3 (s, CH₂OMe), 70.4 (s, OCH₃), 127.6 (s, *o*-C, SO₂Ph), 128.9 (s, *m*-C, SO₂Ph), 132.4 (s, *p*-C, SO₂Ph), 141.2 (s, *i*-C, SO₂Ph). ¹¹⁹Sn NMR (186 MHz, CDCl₃): δ 2.6 (s).

R = i-Pr (**7b**). Yield: 2.49 g (50%). Anal. Calc. for C₂₄H₄₄O₃SSn (531.04): C, 54.28; H, 8.29. Found: C, 53.95; H, 8.64%. ¹H NMR (500 MHz, CDCl₃): δ 0.90 (t, ³*J*(H,H) = 7,47 Hz, 9H, δ -CH₃, Bu), 0.93/0.97 (d/d, ${}^{3}J(H,H) = 6.23$ Hz, 3H + 3H, OCH(CH₃)₂), 1.12-1.20 (m, 6H, α-CH₂, Bu), 1.21-1.39 (m, 6H, γ-CH₂, Bu), 1.49-1.64 (m, 6H, β-CH₂, Bu), 1.92-1.96 (m, 2H, CH₂CH₂CHSn), 2.97-3.10 (m, 2H + 1H, $CH_2Oi-Pr + CHSn$), 3.22 (quin, ${}^{3}J(H,H) = 6.02$ Hz, 1H, OCH(CH₃)₂), 7.46–7.56 (m, 2H, m-H, SO₂Ph + m, 1H, p-H, SO₂Ph), 7.82–7.84 (m, 2H, p-H, SO₂Ph). ¹³C NMR (125 MHz, CDCl₃): δ 11.7 $(s + d + d, {}^{1}J({}^{117}Sn,C) = 322.5 \text{ Hz}, {}^{1}J({}^{119}Sn,C) = 337.6 \text{ Hz}, \alpha-C, \text{ Bu}),$ 13.7 (s, δ -C, Bu), 21.9/21.9 (s/s, OCH(CH₃)₂), 27.3 (s + d, 2 J(119 Sn,C) = 65,9 Hz, β -C, Bu), 28.3 (s, CH₂CH₂CHSn), 28.8 (s + d, ${}^{3}J({}^{119}Sn,C) = 19.4 \text{ Hz}, \gamma$ -C, Bu), 50.9 (s + d + d, ${}^{1}J({}^{117}Sn,C) = 128.6 \text{ Hz},$ ${}^{1}J({}^{119}Sn,C) = 134.5 \text{ Hz}, CHSn), 65.9 (s + d, {}^{3}J({}^{119}Sn,C) = 15.2 \text{ Hz},$ CH₂Oi-Pr), 71.3 (s, OCH(CH₃)₂), 127.7 (s, o-C, SO₂Ph), 128.9 (s, m-C, SO₂Ph), 132.4 (s, p-C, SO₂Ph), 141.3 (s, i-C, SO₂Ph). ¹¹⁹Sn NMR (186 MHz, CDCl₃): δ 3.7 (s).

R = CPh₃ (**7c**). Yield: 3.07 g (42%). Anal. Calc. for C₄₀H₅₂O₃SSn (731.20): C, 65.70; H, 7.11. Found: C, 67.38; H, 7.10%. ¹H NMR (500 MHz, CDCl₃): δ 0.90 (t, ³*J*(H,H) = 7,33 Hz, 9H, δ-CH₃, Bu), 1.02–1.17 (m, 6H, α-CH₂, Bu), 1.22–1.36 (m, 6H, γ-CH₂, Bu), 1.48–1.55 (m, 6H, β-CH₂, Bu), 2.02–2.11 (m, 2H, CH₂CH₂CHSn), 2.68–2.73/2.86–2.90 (m/m, 1H/1H, CH₂OCPh₃), 3.12 (m, 1H, CHSn), 7.19–7.27 (m, 6H + 6H, *m*-H + o-H, OCPh₃), 7.28–7.32 (m, 3H, *p*-H, N

Table 5

Crystallographic data for of [Li{CH(SPh)CH₂CH₂Ot-Bu}(tmeda)] (α-2c).

Empirical formula	C19H35LiN2OS
Mr	346.49
Crystal system	monoclinic
Space group	P2 ₁ /c
a (Å)	14.578(5)
b (Å)	12.880(3)
c (Å)	13.397(4)
V (Å)	2138(1)
Ζ	4
$D_{\text{calc}} (\text{g cm}^{-1})$	1.076
μ (Mo K α) (mm ⁻¹)	0.158
F(0 0 0)	760
Θ range (°)	3.05-26.37
Reflection collected	20 220
Reflection observed $[I > 2\sigma(I)]$	2570
Reflection independent	$4376 (R_{int} = 0.076)$
Data/restraints/parameters	4376/0/224
Goodness-of-fit on F ²	0.999
$R_1, wR_2 \left[I > 2\sigma(I) \right]$	0.0841, 0.2277
R_1, wR_2 (all data)	0.1320, 0.2502
Largest difference in peak and hole ($e \dot{A}^{-3}$)	0.98/-0.36

OCPh₃), 7.33–7.45 (m, 2H, *m*-H, SO₂Ph), 7.52–7.55 (m, 1H, *p*-H, SO₂Ph), 7.79–7.81 (m, 2H, *p*-H, SO₂Ph). ¹³C NMR (125 MHz, CDCl₃): δ 11.5 (s + d + d, ¹J(¹¹⁷Sn,C) = 319.8 Hz, ¹J(¹¹⁹Sn,C) = 337,0 Hz, α-C, Bu), 13.6 (s, δ-C, Bu), 22.6 (s, CH₂CH₂CHSn), 27.2 (s + d, ²J(¹¹⁹Sn,C) = 63.6 Hz, β-C, Bu), 28.8 (s + d, ³J(¹¹⁹Sn,C) = 19.4 Hz, γ-C, Bu), 51.0 (s + d, ¹J(¹¹⁹Sn,C) = 126.4 Hz, CHSn), 62.1 (s, CH₂OCPh₃), 86.6 (s, OCPh₃), 127.0 (s, *p*-C, OCPh₃), 127.7 (s, *m*-C, OCPh₃), 127.9 (s, *o*-C, SO₂Ph), 128.4 (s, *o*-C, OCPh₃), 128.7 (s, *m*-C, SO₂Ph), 132.4 (s, *p*-C, SO₂Ph), 140.9 (s, *i*-C, SO₂Ph), 143.8 (s, *i*-C, OCPh₃). ¹¹⁹Sn NMR (186 MHz, CDCl₃); δ 2.7 (s).

3.11. X-ray crystallography

Data for X-ray diffraction analysis of single crystals of α -**2c**, obtained from *n*-pentane solution at -10 °C, were collected at 130(2) K on a CCD Oxford Xcalibur S (λ (Mo K α) = 0.71073 Å) in ω and φ scans mode. A summary of the crystallographic data, the data collection parameters, and the refinement parameters is given in Table 5. Semi-empirical from equivalents absorption corrections were carried out with scale3 ABSPACK [30]. The structure was solved with direct methods [31]. Structure refinement was carried out using full-matrix least-square routines against F^2 with SHELXL-97 [32]. All non-hydrogen atoms were refined anisotropically; hydrogen atoms were placed in calculated positions and refined with calculated isotropic displacement parameters.

Acknowledgements

Financial support from the Deutsche Forschungsgemeinschaft and gifts of chemicals from Merck (Darmstadt) are gratefully acknowledged.

Appendix A. Supplementary material

CCDC 709946 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via <<u>http://www.ccdc.ca-</u> m.ac.uk/data_request/cif>.

References

- [1] G. Köbrich, Angew. Chem. 84 (1972) 557–570.
- [2] M. Schöllkopf, A. Lerch, Angew. Chem. 73 (1961) 27.
- [3] G. Boche, M. Marsch, A. Mueller, K. Harms, Angew. Chem. 105 (1993) 1081– 1082.
- [4] P. Beak, D.B. Reitz, Chem. Rev. 78 (1978) 275-316.
- [5] P.v. Ragué Schleyer, T. Clark, A.J. Kos, G.W. Spitznagel, C. Rohde, D. Arad, K.N. Houk, N.G. Roudan, J. Am. Chem. Soc. 106 (1984) 6467–6475.
- [6] R. Amstutz, T. Laube, W.B. Schweizer, D. Seebach, J.D. Dunitz, Helv. Chim. Acta 67 (1984) 224–236.
- [7] F. Becke, F.W. Heinemann, D. Steinborn, Organometallics 16 (1997) 2736– 2739.
- [8] T. Rüffer, C. Bruhn, A.H. Maulitz, D. Ströhl, D. Steinborn, Organometallics 19 (2000) 2829–2831.
- [9] H.J. Gais, J. Vollhardt, G. Hellmann, H. Paulus, H.J. Lindner, Tetrahedron Lett. 29 (1988) 1259–1262.
- [10] G. Boche, Angew. Chem. 101 (1989) 286-306.
- [11] M. Marsch, W. Massa, K. Harms, G. Baum, G. Boche, Angew. Chem. 98 (1986) 1004–1005.
- [12] M. Linnert, C. Bruhn, T. Rüffer, H. Schmidt, D. Steinborn, Organometallics 23 (2004) 3668–3673.
- [13] M. Linnert, C. Bruhn, C. Wagner, M. Block, T. Rüffer, H. Schmidt, D. Steinborn, in: M. Melnik, J. Sima, M. Tatarko (Eds.), Advances in Coordination, Bioinorganic and Inorganic Chemistry, vol. 170, STU Press, Bratislava, 2005.
- 14] M. Linnert, Ph.D. Thesis, Martin-Luther-Universität Halle-Wittenberg, 2006.
- [15] D.A. Shirley, B.J. Reeves, J. Organomet. Chem. 16 (1969) 1-6.
- [16] T. Al-Allaf, J. Organomet. Chem. 306 (1986) 337-346.
- [17] B. Wrackmeyer, Annu. Rep. NMR-Spectrosc. 16 (1985) 73-186.
- [18] T. Rüffer, Ph.D. Thesis, Martin-Luther-Universität Halle-Wittenberg, 1999.
- [19] Y. Ura, R. Hara, T. Takahashi, J. Organomet. Chem. 611 (2000) 299–303.
- [20] (a) G. Chassaing, A. Marquet, Tetrahedron 34 (1978) 1399-1404;
- (b) J. Gabriel, D. Seebach, Helv. Chim. Acta 67 (1984) 1070-1082;
 - (c) D. Seebach, J. Gabriel, R. Hässig, Helv. Chim. Acta 67 (1984) 1083-1099.

- [21] Cambridge Structural Database (ConQuest Version 1.10, 2008), Cambridge Crystallographic Data Centre, University Chemical Laboratory, Cambridge, UK.
- [22] (a) R. Lett, G. Chassaing, A. Marquet, J. Organomet. Chem. 111 (1976) C17–C20;
 (b) S. Schade, G. Boche, J. Organomet. Chem. 550 (1998) 359–379;
 - (c) S. Schade, G. Boche, J. Organomet. Chem. 550 (1998) 381–395.
- [23] H.-J. Gais, G. Hellmann, H. Günther, F. Lopez, H.J. Lindner, S. Braun, Angew. Chem. 101 (1989) 1061–1063.
- [24] G. Boche, M. Marsch, K. Harms, G.M. Sheldrick, Angew. Chem. 97 (1985) 577–578.
 [25] J. Müller, M. Neuburger, M. Zehnder, Helv. Chim. Acta 78 (1995) 615–619.
- [25] J. Mullet, M. Reubliget, M. Zenniett, Intr. Chini. Acta 76 (1995) 615–615.[26] M. Linnert, C. Wagner, K. Merzweiler, D. Steinborn, Z. Anorg. Allg. Chem. 634
- (2008) 43–48. [27] M. Linnert, C. Bruhn, C. Wagner, D. Steinborn, J. Organomet. Chem. 691 (2006) 2358–2367.
- [28] R.I. Yousef, T. Rüffer, H. Schmidt, D. Steinborn, J. Organomet. Chem. 655 (2002) 111–114.
- [29] (a) J. Clayden, in: Z. Rappoport, I. Marek (Eds.), The Chemistry of Organolithium Compounds, Wiley, Chichester, 2004, p. 495;
 (b) K. Tomooka, M. Ito, in: H. Yamamoto, K. Oshima (Eds.), Main Group Metals in Organic Synthesis, Wiley-VCH, Weinheim, 2004, p. 1.
- [30] SCALE3 ABSPACK: Empirical Absorption Correction, CrysAlis Software Package, Oxford Diffraction Ltd., 2006.
- [31] G.M. Sheldrick, SHELXS-97, Program for Crystal Structure Solution, University of Göttingen, Göttingen, 1997.
- [32] G.M. Sheldrick, SHELXL-97, Program for the Refinement of Crystal Structures, University of Göttingen, Göttingen, 1997.